Vehicle-Track Interaction & **Dynamics**

Rob Caldwell National Research Council Canada

PRINCIPLES COURSE · JUNE 7

National Research Council Canada

1

Agenda

- 1. Vehicle steering, stability and curving forces
- 2. Wheel-rail profile design and performance
- 3. VTI derailment mechanisms and risk assessment

WHEELSET & VEHICLE STEERING

The Free Rolling Wheelset

The Free Wheelset - Hunting

Equivalent Conicity from the Δ **R** 9 **Plot** ROLLING RADIUS DIFFERENCE GRAPH

British Rail derivation

$$\lambda_e = \frac{1}{2} \int \frac{N(y) \left(r_R - r_L\right)}{y} dy$$

WRI 2023

PRINCIPLES COURSE · JUNE 7

Leading Wheelset - Yaw Angle

The Wheelsets (in a curve)

WHEEL-RAIL PROFILE **DESIGN AND PERFORMANCE**

PRINCIPLES COURSE · JUNE 7

Design of Engineered Rail Profiles

Rail design considers:

- Track curvature
- Worn wheel shapes
- Types of vehicle and speed (hunting)
- Dynamic rail rotation
- Rail hardness

control contact stress

WRI 2023

15

- inhibit hunting
- minimize wear
- Grinding interval (profile deterioration between intervals)
- Static gage

PRINCIPLES COURSE · JUNE 7

The NRC Family of Heavy Haul Rail Templates (1990s)

Rail Profile Design Criteria

Goals are to reduce/control:

- Gauge face and TOR wear
- Rolling contact fatigue (RCF)
- Dynamic instability (hunting)
- Corrugation formation
- Wheel hollowing

And are easily or practically implemented by grinding

Wheel-Rail Contact Stresses

Stress and damage depend on: • High rail wheel radius wheel load Severe gauge-corner contact friction coefficient False Flange wheel/rail profiles (contact geometry) Low rail Hollow wheels National Research **WRI** 2023 PRINCIPLES COURSE · JUNE 7 Council Canada

Wheel / Rail Conformality

closely conformal
0.1 mm (0.004") or less

19

- conformal
 0.1 mm to 0.4mm
 (0.004" to 0.016")
- non-conformal

National Research

Council Canada

0.4 mm (0.016") or larger

WRI 2023

Some Typical Issues Associated with Wheel/Rail Conformality

Closely conformal profiles

Dynamic instability (hunting) Corrugation formation by spin creepage

Conformal profiles

Low stress state W/R interface Used for mass transit and high speed lines = 1PT conformal (good for steering) Heavy haul = 2PT conformal (balance contact stress steering and wear)

Non-conformal profiles

High stress state W/R interface

1PT: cracks (RCF) at GC of HR and FS of LR

2PT: high gauge face wear in curves

PRINCIPLES COURSE · JUNE 7

Worn Wheel and Rail Profiles are **Envelopes of Each Other**

 Worn wheel is an envelope of all rail profiles it encounters on a particular route

 Worn rail is an envelope of all wheel profiles that pass over it

Pummelling Analysis

- Simulation
 - measured wheel profiles
 - vehicle characteristics (stiffness, wheelbase etc.)
 - rail hardness (for damage evaluation)
 - rail curvature, super-elevation, dynamic rail rotation etc.
- Evaluate distributions of
 - contact stress
 - steering moments
 - effective conicity

PRINCIPLES COURSE · JUNE 7

Pummelling: Design/Analysis Tool²³

Families of Rail Profiles

VTI DERAILMENT MECHANISMS AND RISK ASSESSMENT

- Wheel climb
- Low rail rollover

PRINCIPLES COURSE · JUNE 7

WHEEL CLIMB

Wheel/Rail Contact

• W/R contact often takes place at two points simultaneously (some new wheels especially)

Wheel/Rail Contact (cont'd)

• Plan view of contact ellipses on high rail for different angles of attack

Nadal Index (1908)

Slip Vectors at the Gage Face Contact

 $\delta > \beta$, $\alpha = 0$

 $\delta < \beta$, large α

- δ = wheel flange angle
- β = gage face angle

 $\delta = \beta$, moderate α PRINCIPLES COURSE · JUNE 7

Weinstock Derailment Criterion

 $|L/V|_{flanging} + |L/V|_{non_{flanging}} > (L/V_{NADAL} + m)$

- Holds for all positive angles of attack,
- Less accurate for +ve cant deficiency

 At incipient wheel climb, the L/V values on the flanging and non-flanging wheels are, for positive angles of attack, separated by a roughly constant value equal to the Nadal limit plus the coefficient of friction on the top of the low rail

PRINCIPLES COURSE · JUNE 7

National Research Council Canada **WRI** 2023

PRINCIPLES COURSE · JUNE 7

•

Wheel Climb - Conclusions

- Nadal provides a relationship between contact angle and friction coefficient
- Is based upon simplified view of the slip conditions
- Wheel climb threshold matches Nadal at most practical angles of attack, but not for low aoa.
- Weinstock rectifies that (for positive angles of attack) and includes explicitly the effect of friction on top of low rail.
- A safe L/V is some fraction of the (Nadal or Weinstock) threshold value, say 60-80%.
- These are static and quasi-static derivations.

PRINCIPLES COURSE · JUNE 7

National Research Council Canada

36

WRI 2023

LOW RAIL ROLLOVER

Low Rail Rollover

• Wide gauge, hollow wheels, poor restraint, underbalanced running, high friction

Conclusions

- Matching of wheel/rail profiles
 - Rolling radius difference: stability and curving
 - Strong impact on stress, curving forces, stability, surface damage, safety/derailment (with friction conditions, truck suspensions, track geometry etc.)
 - Must consider both new and worn shapes (pummeling)
- Nadal formula is adequate for most wheel climb analyses

PRINCIPLES COURSE · JUNE 7

National Research Council Canada

WRI 2023